Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Unequal error protection random linear coding strategies for erasure channels

Vukobratovic, Dejan and Stankovic, Vladimir (2012) Unequal error protection random linear coding strategies for erasure channels. IEEE Transactions on Communications, 60 (5). pp. 1243-1252. ISSN 0090-6778

Full text not available in this repository. Acknowledge terms & request a copy from the Strathclyde author

Abstract

In this paper, we provide the performance analysis of unequal error protection (UEP) random linear coding (RLC) strategies designed for transmission of source messages containing packets of different importance over lossy packet erasure links. By introducing the probabilistic encoding framework, we first derive the general performance limits for the packet-level UEP coding strategies that encode the packets of each importance class of the source message independently (non-overlapping windowing strategy) or jointly (expanding windowing strategy). Then, we demonstrate that the general performance limits of both strategies are achievable by the probabilistic encoding over non-overlapping and expanding windows based on RLC and the Gaussian Elimination (GE) decoding. Throughout the paper, we present a number of examples that investigate the performance and optimization of code design parameters of the expanding window RLC strategy and compare it with the non-overlapping RLC strategy selected as a reference.