Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

High-intensity 405 nm light inactivation of Listeria monocytogenes

Endarko, E and MacLean, Michelle and Timoshkin, Igor and MacGregor, Scott and Anderson, John (2012) High-intensity 405 nm light inactivation of Listeria monocytogenes. Photochemistry and Photobiology, 88 (5). 1280–1286.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The antimicrobial properties of light is an area of increasing interest. This paper investigates the sensitivity of the significant foodborne pathogen Listeria monocytogenes to selected wavelengths of visible-light. Results demonstrate exposure to wavelengths region 400–450nm, at sufficiently high dose levels (750Jcm2), induced complete inactivation of a 5-log10 population. Exposure to wavelengths longer than 450nm did not cause significant inactivation. Analysis of 10nm bandwidths between 400 and 450nm confirmed 405(±5)nm light to be most effective for inactivation of L. monocytogenes, with a lesser bactericidal effect also evident at other wavelengths between 400 and 440nm. Identification of the optimum bactericidal wavelength enabled comparison of inactivation using 405(±5)nm filtered light and a 405nm LED array (14nm FWHM). Results demonstrate similar inactivation kinetics, indicating that the applied dose of 405-nm light is the important factor. Use of the 405nm LED array for inactivation of L. monocytogenes and other Listeria species resulted in similar kinetics, with up to 5-log10 reductions with a dose of 185Jcm2. Comparative data for the 405nm light inactivation of L. monocytogenes and other important foodborne pathogens, Escherichia coli, Salmonella enteritidis and Shigella sonnei, is also presented, with L. monocytogenes showing higher susceptibility to inactivation through 405nm light exposure.