Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Hypercrosslinked strong anion-exchange resin for extraction of acidic pharmaceuticals from environmental water

Bratkowska, Dominika and Davies, Arlene and Fontanals Torroja, Nuria and Cormack, Peter and Borrull, Francesc and Sherrington, David and Marcé, Rosa Maria (2012) Hypercrosslinked strong anion-exchange resin for extraction of acidic pharmaceuticals from environmental water. Journal of Separation Science, 35. pp. 2621-2628. ISSN 1615-9306

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

Two novel high-specific surface area polymeric sorbents (HXLPP-SAXa and HXLPP-SAXb) were synthesised and evaluated as solid-phase extraction sorbents. The novel sorbents under study are based on hypercrosslinked polymer microspheres and designed specifically to offer ion-exchange properties; the specific polymers of interest in the current work have been chemically modified in such a way as to impart a tuneable level of strong anion-exchange character onto the sorbents. The novel sorbents were applied as strong anion-exchange sorbents in solid-phase extraction studies, with the goal being to selectively extract a group of acidic compounds from complex environmental samples in an efficient manner. Out of two HXLPP-SAX resins evaluated in this study, it was found that the sorbent with the lower ionexchange capacity (HXLPP-SAXa) gave rise to the best overall performance characteristics and, indeed, was found to compare favourably to the solid-phase extraction performance of commercial strong anion-exchange sorbents. When the HXLPP-SAXa sorbent was applied to the solid-phase extraction of environmental water samples, the result showed quantitative and selective extraction of low levels of acidic pharmaceuticals from 500 mL of river water and 100 mL of effluent wastewater.