Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Spontaneous optomechanical pattern formation in cold atoms

Tesio, Enrico and Robb, Gordon and Ackemann, Thorsten and Firth, William and Oppo, Gian-Luca (2012) Spontaneous optomechanical pattern formation in cold atoms. Physical Review A, 86 (3). ISSN 1094-1622

[img] PDF (PRA86_031801_R_12.pdf)
PRA86_031801_R_12.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (292kB)

Abstract

Transverse pattern formation in an optical cavity containing a cloud of cold two-level atoms is discussed. We show that density modulation becomes the dominant mechanism as the atomic temperature is reduced. Indeed, for low but easily achievable temperatures the internal degrees of freedom of the atoms can be neglected, and the system is well described by treating them as linear dielectric particles. A linear stability analysis predicts the instability threshold and the spatial scale of the emergent pattern. Numerical simulations in two transverse dimensions confirm the instability and predict the spontaneous formation of honeycomb and hexagonal density structures, respectively, for the blue and red detuned cases.