Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The micropolar elastic behaviour of model macroscopically heterogeneous materials

Beveridge, Andrew James and Wheel, Marcus and Nash, David (2013) The micropolar elastic behaviour of model macroscopically heterogeneous materials. International Journal of Solids and Structures, 50 (1). 246–255. ISSN 0020-7683

[img] Microsoft Word
Wheel_MA_Pure_Micropolar_elastic_behaviour_of_model_macroscopically_heterogeneous_matrials_Oct_2012.doc
Preprint

Download (5MB)

    Abstract

    This paper describes the design, manufacture, testing and analysis of two model heterogeneous materials that exhibit non classical elastic behaviour when loaded. In particular both materials demonstrate a size effect in which stiffness increases as test sample size reduces; an effect that is unrecognized by classical elasticity but predicted by more generalized elasticity theories that are thought to describe the behaviour of heterogeneous materials more fully. The size effect has been observed by both experimental testing and finite element analysis that fully incorporates the details of the underlying heterogeneity designed into each material. The size effect has been quantified thus enabling both the modulus and also the characteristic length, an additional constitutive parameter present within micropolar and other generalized elasticity theories, to be determined for each material. These characteristic length values are extraordinarily similar to the length scales associated with the structure of the materials. An additional constitutive parameter present within plane micropolar elasticity theory that quantifies shear stress asymmetry has also been determined for one of the materials by using an iterative process that seeks to minimize the differences between numerical predictions and test results.