Picture of satellite hovering above Earth

Open Access research exploring new frontiers in aerospace engineering...

Strathprints makes available Open Access scholarly outputs by the Department of Mechanical & Aerospace Engineering at Strathclyde, which includes an emphasis on air and space research. The Advanced Space Concepts Laboratory (ASCL), the Future Air-Space Transportation Technology Laboratory (FASTTlab) and the Intelligent Computational Engineering Laboratory (ICElab) specialise in this work.

The ASCL undertakes frontier research on visionary space systems, delivering radically new approaches to space systems engineering. Meanwhile, FASTTlab seeks to revolutionise the global air-space transportation systems and infrastructure. ICElab develops advanced research on artificial and computational intelligence techniques with particular focus on optimisation, optimal control, uncertainty-based multidisciplinary design optimisation and machine learning applied to the design and control of complex engineering systems.

Learn more and explore the Open Access research by ASCL, FASTTlab and ICElab. Or, explore all of Strathclyde's Open Access research...

Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device

Haward, S.J. and Ober, Thomas J. and Oliveira, Monica and Alves, M.A. and McKinley, G.H. (2012) Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter, 8 (2). pp. 536-555. ISSN 1744-6848

[img] PDF
Final Published Version

Download (1MB)


Wormlike micellar surfactant solutions are encountered in a wide variety of important applications, including enhanced oil recovery and ink-jet printing, in which the fluids are subjected to high extensional strain rates. In this contribution we present an experimental investigation of the flow of a model wormlike micellar solution (cetyl pyridinium chloride and sodium salicylate in deionised water) in a well-defined stagnation point extensional flow field generated within a microfluidic cross-slot device. We use micro-particle image velocimetry (m-PIV) and full-field birefringence microscopy coupled with macroscopic measurements of the bulk pressure drop to make a quantitative characterization of the fluid’s rheological response over a wide range of deformation rates. The flow field in the micromachined cross-slot is first characterized for viscous flow of a Newtonian fluid, and m-PIV measurements show the flow field remains symmetric and stable up to moderately high Reynolds number, Re z 20, and nominal strain rate, _3nom z 635 s1. By contrast, in the viscoelastic micellar solution the flow field remains symmetric only for low values of the strain rate such that _3nom # lM1, where lM ¼ 2.5 s is the Maxwell relaxation time of the fluid. In this stable flow regime the fluid displays a localized and elongated birefringent strand extending along the outflow streamline from the stagnation point, and estimates of the apparent extensional viscosity can be obtained using the stressoptical rule and from the total pressure drop measured across the cross-slot channel. For moderate deformation rates (_3nom $ lM1) the flow remains steady, but becomes increasingly asymmetric with increasing flow rate, eventually achieving a steady state of complete anti-symmetry characterized by a dividing streamline and birefringent strand connecting diagonally opposite corners of the cross-slot. Eventually, as the nominal imposed deformation rate is increased further, the asymmetric divided flow becomes time dependent. These purely elastic instabilities are reminiscent of those observed in crossslot flows of polymer solutions, but seem to be strongly influenced by the effects of shear localization of the micellar fluid within the microchannels and around the re-entrant corners of the cross-slot.