Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device

Haward, S.J. and Ober, Thomas J. and Oliveira, Monica and Alves, M.A. and McKinley, G.H. (2012) Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter, 8 (2). pp. 536-555. ISSN 1744-6848

[img] PDF
Oliveira_M_Pure_Extensional_rheology_and_elastic_instabilities_of_a_wormlike_micellar_solution_in_a_microfluidic_cross_slot_device_January_2012.pdf
Final Published Version

Download (1MB)

Abstract

Wormlike micellar surfactant solutions are encountered in a wide variety of important applications, including enhanced oil recovery and ink-jet printing, in which the fluids are subjected to high extensional strain rates. In this contribution we present an experimental investigation of the flow of a model wormlike micellar solution (cetyl pyridinium chloride and sodium salicylate in deionised water) in a well-defined stagnation point extensional flow field generated within a microfluidic cross-slot device. We use micro-particle image velocimetry (m-PIV) and full-field birefringence microscopy coupled with macroscopic measurements of the bulk pressure drop to make a quantitative characterization of the fluid’s rheological response over a wide range of deformation rates. The flow field in the micromachined cross-slot is first characterized for viscous flow of a Newtonian fluid, and m-PIV measurements show the flow field remains symmetric and stable up to moderately high Reynolds number, Re z 20, and nominal strain rate, _3nom z 635 s1. By contrast, in the viscoelastic micellar solution the flow field remains symmetric only for low values of the strain rate such that _3nom # lM1, where lM ¼ 2.5 s is the Maxwell relaxation time of the fluid. In this stable flow regime the fluid displays a localized and elongated birefringent strand extending along the outflow streamline from the stagnation point, and estimates of the apparent extensional viscosity can be obtained using the stressoptical rule and from the total pressure drop measured across the cross-slot channel. For moderate deformation rates (_3nom $ lM1) the flow remains steady, but becomes increasingly asymmetric with increasing flow rate, eventually achieving a steady state of complete anti-symmetry characterized by a dividing streamline and birefringent strand connecting diagonally opposite corners of the cross-slot. Eventually, as the nominal imposed deformation rate is increased further, the asymmetric divided flow becomes time dependent. These purely elastic instabilities are reminiscent of those observed in crossslot flows of polymer solutions, but seem to be strongly influenced by the effects of shear localization of the micellar fluid within the microchannels and around the re-entrant corners of the cross-slot.