Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

A model for the numerical simulation of rivulet evolution on a circular cylinder in an air flow

Robertson, A.C. and Taylor, I.J. and Wilson, S.K. and Duffy, B.R. and Sullivan, J.M. (2008) A model for the numerical simulation of rivulet evolution on a circular cylinder in an air flow. In: Flow-induced vibration. The Academy of Sciences of the Czech Republic, Prague, pp. 693-698. ISBN 9788087012123

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

The simultaneous occurrence of rain and wind can generate rivulets of water on the cables of cable-stayed bridges. Under certain conditions the interaction of these rivulets with the local aerodynamic field may result in Rain Wind Induced Vibration (RWIV). A method to model this phenomenon computationally is currently under development at the University of Strathclyde. The current paper presents a two-dimensional model for the evolution of a thin film of water on the outer surface of a circular cylinder subject to pressure, shear, surface-tension and gravitational forces. Numerical simulations of the resulting evolution equation using a bespoke pseudo-spectral solver capture the formation of 'rivulets'; the geometry, location and growth rate of which are all in good agreement with previous studies.