Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Statistical mechanics of two-dimensional tilings

Kaatz, F.H. and Estrada, Ernesto and Bultheel, A. and Sharrock, N. (2012) Statistical mechanics of two-dimensional tilings. Physica A: Statistical Mechanics and its Applications, 391 (10). pp. 2957-2963. ISSN 0378-4371

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Reduced dimensionality in two dimensions is a topic of current interest. We use model systems to investigate the statistical mechanics of ideal networks. The tilings have possible applications such as the 2D locations of pore sites in nanoporous arrays (quantum dots), in the 2D hexagonal structure of graphene, and as adsorbates on quasicrystalline crystal surfaces. We calculate the statistical mechanics of these networks, such as the partition function, free energy, entropy, and enthalpy. The plots of these functions versus the number of links in the finite networks result in power law regression. We also determine the degree distribution, which is a combination of power law and rational function behavior. In the large-scale limit, the degree of these 2D networks approaches 3, 4, and 6, in agreement with the degree of the regular tilings. In comparison, a Penrose tiling has a degree also equal to about 4.