Picture of automobile manufacturing plant

Driving innovations in manufacturing: Open Access research from DMEM

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Design, Manufacture & Engineering Management (DMEM).

Centred on the vision of 'Delivering Total Engineering', DMEM is a centre for excellence in the processes, systems and technologies needed to support and enable engineering from concept to remanufacture. From user-centred design to sustainable design, from manufacturing operations to remanufacturing, from advanced materials research to systems engineering.

Explore Open Access research by DMEM...

Orientational order parameters of a de Vries–type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction

Sanchez-Castillo, A. and Osipov, Mikhail A. and Jagiella, S. and Nguyen, Z.H. and Kaspar, M. and Hamplova, V. and Maclennan, J. and Giesselmann, F. (2012) Orientational order parameters of a de Vries–type ferroelectric liquid crystal obtained by polarized Raman spectroscopy and x-ray diffraction. Physical Review E, 85 (6). ISSN 1539-3755

[img]
Preview
PDF
e061703.pdf - Final Published Version

Download (4MB) | Preview

Abstract

The orientational order parameters 〈P2〉 and 〈P4〉 of the ferroelectric, de Vries–type liquid crystal 9HL have been determined in the SmA* and SmC* phases by means of polarized Raman spectroscopy, and in the SmA* phase using x-ray diffraction. Quantum density functional theory predicts Raman spectra for 9HL that are in good agreement with the observations and indicates that the strong Raman band probed in the experiment corresponds to the uniaxial, coupled vibration of the three phenyl rings along the molecular long axis. The magnitudes of the orientational order parameters obtained in the Raman and x-ray experiments differ dramatically from each other, a discrepancy that is resolved by considering that the two techniques probe the orientational distributions of different molecular axes. We have developed a systematic procedure in which we calculate the angle between these axes and rescale the orientational order parameters obtained from x-ray scattering with results that are then in good agreement with the Raman data. At least in the case of 9HL, the results obtained by both techniques support a “sugar loaf” orientational distribution in the SmA* phase with no qualitative difference to conventional smectics A. The role of individual molecular fragments in promoting de Vries–type behavior is considered.