Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits

Lucking, Charlotte and Colombo, Camilla and McInnes, Colin (2012) Solar radiation pressure augmented deorbiting from high altitude sun-synchronous orbits. In: 4S Symposium 2012, Small Satellites Systems and Services, 2012-06-04 - 2012-06-08.

[img]
Preview
PDF
Lucking_C_et_al_Pure_Solar_radiation_pressure_augmented_deorbiting_from_high_altitude_sun_synchronous_orbits_Jun_2012.pdf
Preprint

Download (1MB)| Preview

    Abstract

    This paper discusses the use of solar radiation pressure (SRP) augmented deorbiting to passively remove small satellites from high altitude Sun-synchronous orbits. SRP-augmented deorbiting works by deploying a light-weight reflective inflatable device to increase the area-to-mass-ratio of the spacecraft. The interactions of the orbital perturbations due to solar radiation pressure and the Earth’s oblateness cause the eccentricity of the orbit to librate at a quasi-constant semi-major axis. A large enough area-to-mass-ratio will ensure that a maximum eccentricity is reached where the spacecraft will then experience enough aerodynamic drag at the orbit pericentre to deorbit. An analytical model of the orbital evolution based on a Hamiltonian approach is used to obtain a first guess for the required area-to-mass-ratio to deorbit. This first guess is then used in a numerical propagation of the orbital elements using the Gauss’ equations to find the actual requirements as a function of altitude. The results are discussed and altitude regions for Sun-synchronous orbits are identified in which the proposed method is most effective. Finally, the implementation of the device is discussed. It is shown that passive solar radiation pressure deorbiting is a useful alternative to propulsive end-of-life manoeuvres for future high altitude Sun-synchronous missions.