Orbital dynamics of high area-to-mass ratio spacecraft under the influence of J2 and solar radiation pressure
Colombo, Camilla and Lucking, Charlotte and McInnes, Colin (2011) Orbital dynamics of high area-to-mass ratio spacecraft under the influence of J2 and solar radiation pressure. In: 62nd International Astronautical Congress 2011, 2011-10-03 - 2011-10-07.
PDF.
Filename: Colombo_C_McInnes_CR_Pure_Orbital_dynamics_of_high_area_to_mass_ratio_spacecraft...presssure_Oct_2011.pdf
Preprint Download (2MB) |
Abstract
This paper investigates the effect of planetary oblateness and solar radiation pressure on the orbit of high area-to-mass spacecraft. A planar Hamiltonian model shows the existence of equilibrium orbits with the orbit apogee pointing towards or away from the Sun. These solutions are numerically continued to non-zero inclinations and considering the obliquity of the ecliptic plane relative to the equator. Quasi-frozen orbits are identified in eccentricity, inclination and angle between the Sun-line and the orbit perigee. The long-term evolution of these orbits is then verified through numerical integration. A set of ‘heliotropic’ orbits with apogee pointing in direction of the Sun is proposed for enhancing imaging and telecommunication on the day side of the Earth. The effects of J2 and solar radiation pressure are exploited to obtain a passive rotation of the apsides line following the Sun; moreover the effect of solar radiation pressure enables such orbits at higher eccentricities with respect to the J2 only case.
-
-
Item type: Conference or Workshop Item(Paper) ID code: 41240 Dates: DateEvent3 October 2011PublishedSubjects: Technology > Motor vehicles. Aeronautics. Astronautics
Technology > Mechanical engineering and machineryDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and ManufacturingDepositing user: Pure Administrator Date deposited: 26 Sep 2012 08:50 Last modified: 11 Nov 2024 16:31 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/41240