Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions — Part II : Parametric study and proposed design equations

Uzzaman, Asraf and Lim, James and Nash, David and Rhodes, James and Young, Ben (2012) Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions — Part II : Parametric study and proposed design equations. Thin-Walled Structures, 56. pp. 79-87. ISSN 0263-8231

[img] PDF
Uzzaman_A_et_al_Pure_Cold_formed_steel_sections_with_web_openings_subjected_to_web_crippling_under_two_flange_loading_conditions_part_2_Jul_2012.pdf - Final Published Version

Download (570kB)

Abstract

A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.