Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Stabilisation of the hyperbolic equilibrium of high area-to-mass spacecraft

Colombo, Camilla and Xu, Ming and McInnes, Colin (2012) Stabilisation of the hyperbolic equilibrium of high area-to-mass spacecraft. In: 63rd International Astronautical Congress, 2012-10-01 - 2012-10-05.

[img] PDF
Colombo_C_et_al_Pure_Stabilisation_of_the_hyperbolic_equilibrium_of_high_area_to_mass_spacecraft_Oct_2012.pdf
Preprint

Download (986kB)

Abstract

In this paper we propose the exploitation of anti-heliotropic orbits, corresponding to the hyperbolic solution of the J2 and solar radiation pressure dynamical system, as gateway orbits between the low-eccentricity orbits where atmospheric drag does not affect the motion and the high eccentricity orbits which enter in drag regime. The eccentricity can be maintained in the neighborhood of the unstable point by means of a controller preserving the Hamiltonian structure of the system. In this way, any initial eccentricity close to the equilibrium conditions will lead to a bound trajectory around the controlled elliptic equilibrium. By selecting the time the controller is turned off, one of the two unstable manifolds leaving the equilibrium point can be followed, leading the orbit to become circular of to increase its eccentricity until natural decay occurs.