Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Self-tuning routine alarm analysis of vibration signals in steam turbine generators

Costello, Jason and West, Graeme and McArthur, Stephen and Campbell, Graeme (2012) Self-tuning routine alarm analysis of vibration signals in steam turbine generators. IEEE Transactions on Reliability, 61 (3). pp. 731-740. ISSN 0018-9529

[img]
Preview
PDF
JJAC_RELIAB.pdf - Accepted Author Manuscript

Download (840kB) | Preview

Abstract

This paper presents a self-tuning framework for knowledge-based diagnosis of routine alarms in steam turbine generators. The techniques provide a novel basis for initialising and updating time series feature extraction parameters used in the automated decision support of vibration events due to operational transients. The data-driven nature of the algorithms allows for machine specific characteristics of individual turbines to be learned and reasoned about. The paper provides a case study illustrating the routine alarm paradigm and the applicability of systems using such techniques.