Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

1-D local binary patterns for onset detection of myoelectric signals

McCool, Paul and Chatlani, Navin and Petropoulakis, Lykourgos and Soraghan, John and Menon, Radhika and Lakany, Heba (2012) 1-D local binary patterns for onset detection of myoelectric signals. In: 20th European Signal Processing Conference, 2012-09-27 - 2012-10-01, Bukarest.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a new 1-D LBP (Local Binary Pattern) based technique for onset detection. The algorithm is tested on forearm surface myoelectric signals that occur due to lower arm gestures. Unlike other onset detection algorithms, the method does not require manual threshold setting and fine-tuning, which makes it faster and easier to implement. The only variables are window size, histogram type and the number of histogram bins. It is also not necessary to measure the properties of the signal during a quiescent period before the algorithm can be used. 1-D LBP Onset Detection is compared with single and double threshold methods and is shown to be more robust and accurate.