Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

1-D local binary patterns for onset detection of myoelectric signals

McCool, Paul and Chatlani, Navin and Petropoulakis, Lykourgos and Soraghan, John and Menon, Radhika and Lakany, Heba (2012) 1-D local binary patterns for onset detection of myoelectric signals. In: 20th European Signal Processing Conference, 2012-09-27 - 2012-10-01, Bukarest.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

This paper presents a new 1-D LBP (Local Binary Pattern) based technique for onset detection. The algorithm is tested on forearm surface myoelectric signals that occur due to lower arm gestures. Unlike other onset detection algorithms, the method does not require manual threshold setting and fine-tuning, which makes it faster and easier to implement. The only variables are window size, histogram type and the number of histogram bins. It is also not necessary to measure the properties of the signal during a quiescent period before the algorithm can be used. 1-D LBP Onset Detection is compared with single and double threshold methods and is shown to be more robust and accurate.