Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber Bragg grating strain sensing

Perry, Marcus and Orr, Philip and Niewczas, Pawel and Johnston, Michael (2012) Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber Bragg grating strain sensing. Journal of Lightwave Technology, 30 (20). 3252 - 3258. ISSN 0733-8724

[img]
Preview
PDF (Nanoscale resolution interrogation scheme for simultaneous static and dynamic fiber bragg grating strain sensing)
finaltextandfigsMP.pdf
Accepted Author Manuscript
License: Unspecified

Download (1MB) | Preview

Abstract

A combined interrogation and signal processing technique which facilitates high-speed simultaneous static and dynamic strain demodulation of multiplexed fiber Bragg grating sensors is described. The scheme integrates passive, interferometric wavelength-demodulation and fast optical switching between wavelength division multiplexer channels with signal extraction via a software lock-in amplifier and fast Fourier transform. Static and dynamic strain measurements with noise floors of 1 nanostrain and 10 nanostrain/sqrt(Hz), between 5 mHz and 2 kHz were obtained. An inverse analysis applied to a cantilever beam set up was used to characterise and verify strain measurements using finite element modeling. By providing distributed measurements of both ultahigh-resolution static and dynamic strain, the proposed scheme will facilitate advanced structural health monitoring.