Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

The ALPHA-X beam line : towards a compact FEL

Anania, Maria Pia and Brunetti, Enrico and Cipiccia, Silvia and Clark, David and Issac, Riju and Manahan, Grace and McCanny, Thomas and Reitsma, Albert and Shanks, Richard and Welsh, Gregor H. and Wiggins, Mark and Jaroszynski, Dino and van der Geer, S. B. and de Loos, M. J. and Poole, M.W. and Clarke, J. A. and Shepherd, B. J. A. (2010) The ALPHA-X beam line : towards a compact FEL. In: IPAC 2010 contributions to the proceedings. IPAC/ACFA, pp. 2263-2265. ISBN 9789290833529

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Furthermore, since the duration of electron bunches from laser-plasma wakefield accelerators (LWFAs) is determined by the relativistic plasma wavelength, radiation sources based on these accelerators can produce pulses with femtosecond durations. Beam properties from laser-plasma accelerators have been traditionally thought of as not being of sufficient quality to produce amplification. However, our work shows this not to be the case. Here, we present a study of the beam characteristics of a laser-plasma accelerator and the compact ALPHA-X (Advanced Laser Plasma Highenergy Accelerators towards X-rays) FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles [1, 2]. The design of these devices has been carried out using the GPT (General Particle Tracer) code [3, 4], which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. We will present a study of the influence of beam transport on FEL action in the undulator, paying particular attention to bunch dispersion in the undulator. This is an important step for developing a compact synchrotron source or a SASE free-electron laser [5, 6].