Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

The ALPHA-X beam line : towards a compact FEL

Anania, Maria Pia and Brunetti, Enrico and Cipiccia, Silvia and Clark, David and Issac, Riju and Manahan, Grace and McCanny, Thomas and Reitsma, Albert and Shanks, Richard and Welsh, Gregor H. and Wiggins, Mark and Jaroszynski, Dino and van der Geer, S. B. and de Loos, M. J. and Poole, M.W. and Clarke, J. A. and Shepherd, B. J. A. (2010) The ALPHA-X beam line : towards a compact FEL. In: IPAC 2010 contributions to the proceedings. IPAC/ACFA, pp. 2263-2265. ISBN 9789290833529

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Furthermore, since the duration of electron bunches from laser-plasma wakefield accelerators (LWFAs) is determined by the relativistic plasma wavelength, radiation sources based on these accelerators can produce pulses with femtosecond durations. Beam properties from laser-plasma accelerators have been traditionally thought of as not being of sufficient quality to produce amplification. However, our work shows this not to be the case. Here, we present a study of the beam characteristics of a laser-plasma accelerator and the compact ALPHA-X (Advanced Laser Plasma Highenergy Accelerators towards X-rays) FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles [1, 2]. The design of these devices has been carried out using the GPT (General Particle Tracer) code [3, 4], which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. We will present a study of the influence of beam transport on FEL action in the undulator, paying particular attention to bunch dispersion in the undulator. This is an important step for developing a compact synchrotron source or a SASE free-electron laser [5, 6].