Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Two-photon excited fluorescence in praseodymium doped fibre and its application in distributed optical fibre sensing of temperature

Dalzell, C. J. and Han, T. P. J. and Ruddock, I. S. (2011) Two-photon excited fluorescence in praseodymium doped fibre and its application in distributed optical fibre sensing of temperature. In: 21st International Conference on Optical Fiber Sensors. Proceedings of SPIE . SPIE--The International Society for Optical Engineering., Bellingham. ISBN 9780819482464

Full text not available in this repository.Request a copy from the Strathclyde author


Distributed temperature sensing based on time-correlated two-photon excited fluorescence (TPF) in doped fibre is described. Counter-propagating laser pulses generate a TPF flash at the position of overlap which is scanned along the fibre by a variable relative time delay. The flash is detected and analysed at one end. With the fluorescence power being completely independent of excitation pulse duration and temporal profile, the sensor does not require ultrashort excitation pulses for operation. There is potential for high spatial resolution as the length of the sensed region depends only on pulse duration. TPF is reported in bulk glass doped with rare earths and in doped single-mode fibre. The suitability of fluorescence transitions for sensing is discussed taking into account the temperature dependence of the decay times, the location of the terminating energy level relative to the ground state, and the option of non-degenerate TPF.