Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons

Cipiccia, Silvia and Wiggins, Mark and Shanks, Richard and Islam, Mohammad and Vieux, Gregory and Issac, Riju and Brunetti, Enrico and Ersfeld, Bernhard and Welsh, Gregor H. and Anania, Maria Pia and Maneuski, Dzmitry and Lemos, Nuno R. C. and Bendoyro, Rodolfo and Rajeev, Pattathil P. and Foster, P. and Bourgeois, Nicola and Ibbotson, T. and Walker, P. A. and Shea, Val O. and Dias, João M. and Jaroszynski, Dino (2012) A tuneable ultra-compact high-power, ultra-short pulsed, bright gamma-ray source based on bremsstrahlung radiation from laser-plasma accelerated electrons. Journal of Applied Physics, 111 (6). ISSN 0021-8979

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The laser driven plasma wakefield accelerator is a very compact source of high energy electrons. When the quasi-monoenergetic beam from these accelerators passes through dense material, high energy bremsstrahlung photons are emitted in a collimated beam with high flux. We show how a source based on this emission process can produce more than 109 photons per pulse with a mean energy of 10 MeV. We present experimental results that show the feasibility of this method of producing high energy photons and compare the experimental results with GEANT4 Montecarlo simulations, which also give the scaling required to evaluate its suitability as method to produce radioisotopes via photo-nuclear reactions or for imaging applications.