Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Liquid slip/stick over hydrophobic/hydrophilic surfaces and their implications in coating processes

Dongari, N. (2011) Liquid slip/stick over hydrophobic/hydrophilic surfaces and their implications in coating processes. Chemical Engineering and Processing: Process Intensification, 50 (5-6). pp. 450-453. ISSN 0255-2701

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Fluid slip has been observed experimentally in micro- and nanoscale liquid flow devices by several investigators. While observations of fluid slip continue to expand, the generating mechanism responsible for fluid slip is not well understood and indeed generalized mathematical formulation is not available. In the present paper, the author gave an attempt to explain the generating mechanism for the fluid slip on hydrophobic surface. The importance of the present theory lies in the fact that it obviates the need to impose the ad hoc Newtons slip at the fluid-wall interface and also the pre-assumption of thin gas layer close to the wall. Surface interactions with the liquid/fluid at molecular scale are incorporated together with the phase field theory to accurately predict the phase of the fluid close to the wall, which is imperative to accurately determine the fluid slip close to the wall. It is noticed that the incorporation of these molecule-surface interactions have significant effect on the resulting coating windows on both hydrophobic and hydrophilic substrates, however it is more predominant for the hydrophobic one.