Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The role of residual thermal stress in interfacial strength of polymer composites by a novel single fibre technique

Yang, Liu and Thomason, James (2012) The role of residual thermal stress in interfacial strength of polymer composites by a novel single fibre technique. In: 15th European Conference on Composite Materials, 2012-06-24 - 2012-06-28.

[img]
Preview
Text (Yang-Thomason-ECCM15-The-role-of-residual-thermal stress-composite-strength-novel-single-fibre-technique Jun 2012)
Yang_Thomason_ECCM15_The_role_of_residual_thermal_stress_composite_strength_novel_single_fibre_technique_Jun_2012.pdf
Accepted Author Manuscript

Download (422kB) | Preview

Abstract

The temperature dependence of the interfacial properties of glass fibre reinforced polypropylene and epoxy composites was investigated using a novel microbond test in the temperature controlled environment of a thermo-mechanical analyser. Highly significant inverse dependence of IFSS on testing temperature was observed in both systems. The temperature dependence of the GF-PP IFSS was accounted for by the variation of residual radial compressive stresses at the interface with the test temperature. On the other hand, it was found that the residual thermal stress did not seem to fully account for the temperature dependence of IFSS in GF-Epoxy. Nevertheless, the results clearly showed that GF-Epoxy IFSS had a strong correlation with the modulus of the epoxy matrix.