Picture offshore wind farm

Open Access research that is improving renewable energy technology...

Strathprints makes available scholarly Open Access content by researchers across the departments of Mechanical & Aerospace Engineering (MAE), Electronic & Electrical Engineering (EEE), and Naval Architecture, Ocean & Marine Engineering (NAOME), all of which are leading research into aspects of wind energy, the control of wind turbines and wind farms.

Researchers at EEE are examining the dynamic analysis of turbines, their modelling and simulation, control system design and their optimisation, along with resource assessment and condition monitoring issues. The Energy Systems Research Unit (ESRU) within MAE is producing research to achieve significant levels of energy efficiency using new and renewable energy systems. Meanwhile, researchers at NAOME are supporting the development of offshore wind, wave and tidal-current energy to assist in the provision of diverse energy sources and economic growth in the renewable energy sector.

Explore Open Access research by EEE, MAE and NAOME on renewable energy technologies. Or explore all of Strathclyde's Open Access research...

Design of manikin for testing of residual-limb shape-capture method : technical note

McGarry, Anthony and McHugh, Brendan and Duers, Jake and Buis, Arjan W. P. (2011) Design of manikin for testing of residual-limb shape-capture method : technical note. Journal of Rehabilitiation Research and Development, 48 (3). pp. 245-252. ISSN 0748-7711

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Consensus is still lacking on how best to capture the shape of a residual limb. Computer-aided design systems have not proven more accurate, repeatable, or reliable than traditional plaster of paris methods. Research is limited in design, relates to clinical trials, and is based on opinions and clinical experience. Many outcome measurements are based on qualitative estimations of prosthetic fit or patient feedback rather than quantitative measurements. Research must identify the most accurate, repeatable, and reliable methods for residual-limb shape capture under conditions most likely to enhance socket fit. Measurement is difficult because a reference grid is requiredfor identifying the residual limb's axis for ensuring direct comparison. This article describes a manikin production method for testing the shape capture of the residual limb. Diameters and volume were measured at specific levels with a programmable computer numerical control milling machine and a displacement tool, with a combined accuracy of 5 micrometers.