Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction

Chen, Zeng-Ping and Li, Li-Mei and Jin, Jing-Wen and Nordon, Alison and Littlejohn, David and Yang, Jing and Zhang, Juan and Yu, Ru-Qin (2012) Quantitative analysis of powder mixtures by raman spectrometry : the influence of particle size and its correction. Analytical Chemistry, 84 (9). pp. 4088-4094. ISSN 0003-2700

PDF (Littlejohn-etal-AC-2012-Quantitative-analysis-of-powder)
Accepted Author Manuscript

Download (1MB)| Preview


    Particle size distribution and compactness have significant confounding effects on Raman signals of powder mixtures, which cannot be effectively modeled or corrected by traditional multivariate linear calibration methods such as partial least-squares (PLS), and therefore greatly deteriorate the predictive abilities of Raman calibration models for powder mixtures. The ability to obtain directly quantitative information from Raman signals of powder mixtures with varying particle size distribution and compactness is, therefore, of considerable interest In this study, an advanced quantitative Raman calibration model was developed to explicitly account for the confounding effects of particle size distribution and compactness on Raman signals of powder mixtures. Under the theoretical guidance of the proposed Raman calibration model, an advanced dual calibration strategy was adopted to separate the Raman contributions caused by the changes in mass fractions of the constituents in powder mixtures from those induced by the variations in the physical properties of samples, and hence achieve accurate quantitative determination for powder mixture samples. The proposed Raman calibration model was applied to the quantitative analysis of backscatter Raman measurements of a proof-of-concept model system of powder mixtures consisting of barium nitrate and potassium chromate. The average relative prediction error of prediction obtained by the proposed Raman calibration model was less than one-third of the corresponding value of the best performing PLS model for mass fractions of barium nitrate in powder mixtures with variations in particle size distribution, as well as compactness.