Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

An improved lead-acid battery pack model for use in power simulations of electric vehicles

Carter, R. and Cruden, A. and Hall, P. J. and Zaher, A. S. (2012) An improved lead-acid battery pack model for use in power simulations of electric vehicles. IEEE Transactions on Energy Conversion, 27 (1). pp. 21-28. ISSN 0885-8969

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

A new model for a lead-acid battery pack is proposed for use in power simulations of electric vehicles. A linear approximation using a constant voltage drop has been used to model the charge-transfer resistance of the battery pack, and an exponential voltage-recovery equation has been used to model the transient capacitance effects following a period of discharge. The new model is easy to implement with simple calculations and easily acquired parameters, combining speed of implementation with accuracy. The new model was found to have a peak error of 3.1% in drive cycle tests, thus comparing favorably to existing models of similar complexity. An initial assessment of the model's suitability for use with a lithium-ion battery pack was also performed, finding a peak error of 5%.