Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Intrinsic, multiplexable sensors for electric field strength using structural slow light in phase-shifted fibre Bragg gratings

Orr, Philip and Niewczas, Pawel (2012) Intrinsic, multiplexable sensors for electric field strength using structural slow light in phase-shifted fibre Bragg gratings. In: SPIE Proceedings Vol. 8421. SPIE--The International Society for Optical Engineering.. ISBN 9780819491039

[img]
Preview
PDF (Intrinsic, multiplexable sensors for electric field strength using structural slow light in phase-shifted fibre Bragg gratings)
OrrNiewczas_OFS22.pdf
Preprint
License: Unspecified

Download (352kB)| Preview

    Abstract

    In this paper we demonstrate through simulation the potential for phase-shifted fibre Bragg gratings incorporating structural slow light to enable intrinsic reflection-mode point sensors for electric field or voltage. It is shown that lo-bi FBGs incorporating multiple phase shifts yield large enhancements in group index (group delay) at resonance, thus amplifying and localizing time-dependent non-reciprocal effects. A relative, multiplexable measurement of electric field by comparison of the phase unbalance between linear modes on and off resonance is proposed, yielding static resolutions of 24 V and 18 mV respectively in unpoled (dc Kerr effect) and poled (Pockels effect) fibres.