Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Species variation in small molecule components of animal vitreous

Mains, Jenifer and Tan, Lay Ean and Zhang, Wei and Young, Louise and Shi, Ruiwen and Wilson, Clive (2012) Species variation in small molecule components of animal vitreous. Investigative Ophthalmology and Visual Science, 53 (8). pp. 4778-4786. ISSN 0146-0404

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

We characterized differences in biochemical composition of the vitreous of different animal species with respect to small molecule constituents. Vitreous samples were extracted from sheep, pig, Dutch Belted rabbits, and New Zealand white rabbits. The vitreous samples were investigated for acetylcholinesterase (AChE) activity and, in addition, were subjected to metabolomics determination using mass spectrometry. AChE activity varied across the species investigated with greater activity noted in larger animals. Principal component analysis demonstrated species differentiation in relation to metabolomic profile. Key peaks identified the importance of animal diet on small molecule composition of the vitreous. Our results highlighted principal and consistent differences in small molecule composition and enzymatic activity of the vitreous depending on species. Interesting differences were demonstrated, showing that diet potentially can impact on components of and metabolites contained within the vitreous. Material will be exchanged between vascular and retinal tissue with the vitreous compartment and as a nonvascular, slowly equilibrating “sink” might reflect changes in transporter activity. As a first step, understanding the differences in the metabolic profile of vitreous from different species may impact interpretation of such activity across different species.