Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The electrochemical performance of phenol-formaldehyde based activated carbon electrodes for lithium/oxygen batteries

Shitta-Bey, G. O. and Mirzaeian, M. and Halla, P. J. (2012) The electrochemical performance of phenol-formaldehyde based activated carbon electrodes for lithium/oxygen batteries. Journal of the Electrochemical Society, 159 (3). A315-A320. ISSN 0013-4651

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Here we demonstrate the use of polymer derived activated carbons as the potential electrode material for Li/O2 batteries. The activated carbons were synthesized by sol-gel polycondensation of low cost phenol and formaldehyde followed by carbonization at 1050°C in an inert atmosphere and activation under CO2 to different degrees of burn off. Galvanostatic charge/discharge measurements performed on the activated carbon based electrodes show that discharge capacity increases with mesopore volume, with the highest discharge capacity of 1852 mAh/g obtained for the carbon having the highest mesopore volume of 1.8717 cm3/g. Galvanostatic rate capability tests show that discharge capacity of the cell decreases with increasing discharge rates significantly.