Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Multivariate statistical methods for the environmental forensic classification of coal tars from former manufactured gas plants

McGregor, Laura A. and Gauchotte-Lindsay, Caroline and Daeid, Niamh Nic and Thomas, Russell and Kalin, Robert M. (2012) Multivariate statistical methods for the environmental forensic classification of coal tars from former manufactured gas plants. Environmental Science and Technology, 46 (7). pp. 3744-3752.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Compositional disparity within a set of 23 coal tar samples (obtained from 15 different former manufactured gas plants) was compared and related to differences between historical on-site manufacturing processes. Samples were prepared using accelerated solvent extraction prior to analysis by two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. A suite of statistical techniques, including univariate analysis, hierarchical cluster analysis, two-dimensional cluster analysis, and principal component analysis (PCA), were investigated to determine the optimal method for source identification of coal tars. The results revealed that multivariate statistical analysis (namely, PCA of normalized, preprocessed data) has the greatest potential for environmental forensic source identification of coal tars, including the ability to predict the processes used to create unknown samples.