Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The motor cortex drives the muscles during walking in human subjects

Petersen, Tue and Willerslev-Olsen, M and Conway, Bernard A and Nielsen, J.B. (2012) The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590 (10). pp. 2443-2452. ISSN 0022-3751

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

It is often assumed that automatic movements such as walking require little conscious attention and it has therefore been argued that these movements require little cortical control.  In humans, however, the gait function is often heavily impaired or completely lost following cortical lesions such as stroke.  In this study we investigated synchrony between cortical signals recorded with electroencephalography (EEG) and electromyographic signals (EMG activity) recorded from the tibialis anterior muscle (TA) during walking.  We found evidence of synchrony in the frequency domain (coherence) between the primary motor cortex and the TA muscle indicating a cortical involvement in human gait function.  This finding underpins the importance of restoration of the activity and connectivity between the motor cortex and the spinal cord in the recovery of gait function in patients with damage of the central nervous system.