The motor cortex drives the muscles during walking in human subjects
Petersen, Tue and Willerslev-Olsen, M and Conway, Bernard A and Nielsen, J.B. (2012) The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590 (10). pp. 2443-2452. ISSN 0022-3751 (https://doi.org/10.1113/jphysiol.2012.227397)
Full text not available in this repository.Request a copyAbstract
It is often assumed that automatic movements such as walking require little conscious attention and it has therefore been argued that these movements require little cortical control. In humans, however, the gait function is often heavily impaired or completely lost following cortical lesions such as stroke. In this study we investigated synchrony between cortical signals recorded with electroencephalography (EEG) and electromyographic signals (EMG activity) recorded from the tibialis anterior muscle (TA) during walking. We found evidence of synchrony in the frequency domain (coherence) between the primary motor cortex and the TA muscle indicating a cortical involvement in human gait function. This finding underpins the importance of restoration of the activity and connectivity between the motor cortex and the spinal cord in the recovery of gait function in patients with damage of the central nervous system.
ORCID iDs
Petersen, Tue, Willerslev-Olsen, M, Conway, Bernard A ORCID: https://orcid.org/0000-0002-0069-0131 and Nielsen, J.B.;-
-
Item type: Article ID code: 40031 Dates: DateEvent15 May 2012Published5 March 2012Published OnlineSubjects: Technology > Engineering (General). Civil engineering (General) > Bioengineering Department: Faculty of Engineering > Biomedical Engineering Depositing user: Pure Administrator Date deposited: 13 Jun 2012 15:57 Last modified: 11 Nov 2024 10:09 URI: https://strathprints.strath.ac.uk/id/eprint/40031