Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Charybdis : The next generation in ocean colour and biogeochemical remote sensing

Lowe, Christopher John and Macdonald, Malcolm and Greenland, Stephen and McKee, David (2012) Charybdis : The next generation in ocean colour and biogeochemical remote sensing. In: 26th Annual AIAA/USU Conference on Small Satellites, 2012-08-13 - 2012-08-16.

[img]
Preview
PDF
Macdonald_M_Pure_Charybdis_The_Next_Generation_in_Ocean_Colour_and_Biogeochemical_Remote_Sensing_Aug_2012.pdf
Preprint

Download (837kB) | Preview

Abstract

Within the field of Space-based Maritime observation, there exists an opportunity in the form of high spatial, high temporal resolution multi-spectral imaging to map coastal and inland waterway colour and biogeochemistry. Information provided would help environmental agencies and the scientific community to better understand patterns and evolution of ecological systems, sediment suspension in river estuaries and the effects of anthropogenic processes on our water systems. In addition, monitoring of these colour patterns with respect to the well understood tidal sequence would provide significant benefits to our understanding of the way in which tidal forcing affects ocean colour. This paper describes the astrodynamic properties of a tidal-synchronous satellite trajectory and the system-level design of a multi-platform CubeSat constellation capable of high resolution, multispectral imaging. The constellation, named ‘Charybdis’, is envisaged to be dedicated to providing unprecedented levels of data (high temporal and spatial resolution) of coastal regions and inland waterway colour and biogeochemistry. Analyses of two alternative missions are presented; one providing bi-hourly, global coverage from 115 nanosatellites and a second providing bi-hourly regional coverage over the UK mainland from 30 nanosatellites.