Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Influence of microstructure and stress on short intergranular stress corrosion crack growth in austenitic stainless steel type 304

Rahimi, Salaheddin and Marrow, James (2008) Influence of microstructure and stress on short intergranular stress corrosion crack growth in austenitic stainless steel type 304. In: 17th European Conference on Fracture, 2008-09-02 - 2008-09-05.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Intergranular stress corrosion cracking (IGSCC) causes failures in austenitic stainless steels when the appropriate electrochemical, metallurgical and mechanical conditions exist. In this study, the effects of time, applied stress, residual stress and microstructure on population of short crack nuclei has been investigated in sensitised type 304 austenitic stainless steel, tested under static load in an acidified potassium tetrathionate (K2S4O6) environment. Statistical analysis, using the Gumbel distribution method, enables analysis of the growth rate of short crack nuclei. This methodology is being developed, in order to quantitatively evaluate the influence of grain boundary engineering and surface finishing on crack nucleation.