Probing the neutral graphene-ionic liquid interface: insights from molecular dynamics simulations
Fedorov, Maxim V. and Lynden-Bell, R. M. (2012) Probing the neutral graphene-ionic liquid interface: insights from molecular dynamics simulations. Physical Chemistry Chemical Physics, 14 (8). pp. 2552-2556. ISSN 1463-9084 (https://doi.org/10.1039/c2cp22730d)
Full text not available in this repository.Request a copyAbstract
We study basic mechanisms of the interfacial layer formation at the neutral graphite monolayer (graphene)-ionic liquid (1,3-dimethylimidazolium chloride, [dmim][Cl]) interface by fully atomistic molecular dynamics simulations. We probe the interface area by a spherical probe varying the charge (-1e, 0, + 1e) as well as the size of the probe (diameter 0.50 nm and 0.38 nm). The molecular modelling results suggest that: there is a significant enrichment of ionic liquid cations at the surface. This cationic layer attracts Cl- anions that leads to the formation of several distinct ionic liquid layers at the surface. There is strong asymmetry in cationic/anionic probe interactions with the graphene wall due to the preferential adsorption of the ionic liquid cations at the graphene surface. The high density of ionic liquid cations at the interface adds an additional high energy barrier for the cationic probe to come to the wall compared to the anionic probe. Qualitatively the results from probes with diameter 0.50 nm and 0.38 nm are similar although the smaller probe can approach closer to the wall. We discuss the simulation results in light of available experimental data on the interfacial structure in ionic liquids.
-
-
Item type: Article ID code: 39864 Dates: DateEvent2012PublishedSubjects: Science > Physics > Solid state physics. Nanoscience Department: Faculty of Science > Physics
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 30 May 2012 14:06 Last modified: 11 Nov 2024 10:08 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/39864