The feasibility of using an L1 positioned dust cloud as a method of space-based geoengineering
Bewick, Russell and Sanchez Cuartielles, Joan-Pau and McInnes, Colin (2012) The feasibility of using an L1 positioned dust cloud as a method of space-based geoengineering. Advances in Space Research, 49 (7). pp. 1212-1228. ISSN 0273-1177 (https://doi.org/10.1016/j.asr.2012.01.010)
Preview |
PDF.
Filename: Bewick_R_et_al_Pure_The_feasibility_of_using_an_L1_positioned_dust_cloud_as_a_method_of_space_based_geoengineering_May_2012.pdf
Preprint Download (3MB)| Preview |
Abstract
In this paper a method of geoengineering is proposed involving clouds of dust placed in the vicinity of the L1 point as an alternative to the use of thin film reflectors. The aim of this scheme is to reduce the manufacturing requirement for space-based geoengineering. It has been concluded that the mass requirement for a cloud placed at the classical L1 point, to create an average solar insolation reduction of 1.7%, is 7.60x1010 kg yr−1 whilst a cloud placed at a displaced equilibrium point created by the inclusion of the effect of solar radiation pressure is 1.87x1010 kg yr−1. These mass ejection rates are considerably less than the mass required in other unprocessed dust cloud methods proposed and are comparable to thin film reflector geoengineering requirements. Importantly, unprocessed dust sourced in-situ is seen as an attractive scheme compared to highly engineered thin film reflectors. It is envisaged that the required mass of dust can be extracted from captured near Earth asteroids, whilst stabilised in the required position using the impulse provided by solar collectors or mass drivers used to eject material from the asteroid surface.
-
-
Item type: Article ID code: 39705 Dates: DateEvent1 April 2012PublishedSubjects: Technology > Mechanical engineering and machinery
Technology > Motor vehicles. Aeronautics. AstronauticsDepartment: Faculty of Engineering > Mechanical and Aerospace Engineering
Technology and Innovation Centre > Advanced Engineering and ManufacturingDepositing user: Pure Administrator Date deposited: 15 May 2012 09:47 Last modified: 11 Nov 2024 10:08 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/39705