Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Compressive image sampling with side information

Stankovic, V. and Stankovic, L. and Cheng, S. (2009) Compressive image sampling with side information. In: Image processing (ICIP) 2009. IEEE, New York, pp. 3037-3040. ISBN 9781424456536

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Compressive sampling is a novel framework that exploits sparsity of a signal in a transform domain to perform sampling below the Nyquist rate. In this paper, we apply compressive sampling to reduce the sampling rate of images/video. The key idea is to exploit the intra- and inter-frame correlation to improve signal recovery algorithms. The image is split into non-overlapping blocks of fixed size, which are independently compressively sampled exploiting sparsity of natural scenes in the discrete cosine transform (DCT) domain. At the decoder, each block is recovered using useful information extracted from the recovery of a neighboring block. In the case of video, a previous frame is used to help recovery of consecutive frames. The iterative algorithm for signal recovery with side information that extends the standard orthogonal matching pursuit (OMP) algorithm is employed. Simulation results are given for magnetic resonance imaging (MRI) and video sequences to illustrate advantages of the proposed solution compared to the case when side information is not used