Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Linear matching method on the evaluation of cyclic behaviour with creep effect

Chen, Haofeng and Chen, Weihang and Ure, James Michael (2012) Linear matching method on the evaluation of cyclic behaviour with creep effect. In: ASME Pressure Vessels and Piping Conference 2012, 2012-07-15 - 2012-07-20.

[img] PDF
Chen_HF_Pure_Linear_matching_method_on_the_evaluation_of_cyclic_behaviour_with_creep_effect_Jul_2012.pdf
Preprint

Download (545kB)

Abstract

This paper describes a new Linear Matching Method (LMM) technique for the direct evaluation of cyclic behaviour with creep effects of structures subjected to a general load condition in the steady cyclic state. The creep strain and plastic strain range for use in creep damage and fatigue assessments, respectively, are obtained. A benchmark example of a Bree cylinder subjected to cyclic thermal load and constant mechanical load is analysed to verify the applicability of the new LMM to deal with the creep fatigue damage. The cyclic responses for different loading conditions and dwell time periods within the Bree boundary are obtained. To demonstrate the efficiency and effectiveness of the method for more complex structures, a 3D holed plate subjected to cyclic thermal loads and constant axial tension is analysed. The results of both examples show that with the presence of creep the cyclic responses change significantly. The new LMM procedure provides a general purpose technique for the evaluation of cyclic behaviour, the plastic strain range and creep strain for the creep fatigue damage assessment with creep fatigue interaction.