In silico screening of bioactive and biomimetic solutes using Integral Equation Theory
Palmer, David S. and Chuev, Gennady N. and Ratkova, Ekaterina L. and Fedorov, Maxim V. (2011) In silico screening of bioactive and biomimetic solutes using Integral Equation Theory. Current Pharmaceutical Design, 17 (17). pp. 1695-1708. ISSN 1381-6128 (https://doi.org/10.2174/138161211796355065)
Full text not available in this repository.Request a copyAbstract
The Integral Equation Theory (IET) of Molecular Liquids is a theoretical framework for modelling solution phase behaviour that has recently found new applications in computational drug design. IET allows calculation of solvation thermodynamic parameters at significantly lower computational expense than explicit solvent simulations, but also provides information about the microscopic solvent structure that is not accessible by implicit continuum models. In this review we focus on recent advances in two fields of research using these methods: (i) calculation of the hydration free energies of bioactive molecules; (ii) modelling the aggregation of biomimetic molecules. In addition, we discuss sources of experimental solvation data for druglike molecules.
ORCID iDs
Palmer, David S. ORCID: https://orcid.org/0000-0003-4356-9144, Chuev, Gennady N., Ratkova, Ekaterina L. and Fedorov, Maxim V.;-
-
Item type: Article ID code: 39168 Dates: DateEventJune 2011PublishedSubjects: Science > Physics > Solid state physics. Nanoscience
Science > ChemistryDepartment: Faculty of Science > Physics
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 16 Apr 2012 11:01 Last modified: 11 Nov 2024 10:07 URI: https://strathprints.strath.ac.uk/id/eprint/39168