Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Measurement and management of human-induced patterns of forest fragmentation

Tole, L.A. (2006) Measurement and management of human-induced patterns of forest fragmentation. Environmental Management, 37 (6). pp. 788-801. ISSN 0364-152X

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In many tropical developing countries, the twin pressures of population and poverty are resulting in substantial fragmentation of forests, increasing the probability of extinction for many species, Forest fragmentation occurs when large contiguous forests are perforated by small holes or broken up into edges and smaller patches to form a nonforested matrix of open spaces. Thus, forest fragmentation refers not only to the area of forest cleared, but also to the pattern of this clearance, the resulting forest's spatial properties. Both characteristics are important for species survivability. Apart from opening up forests to many abiotic and biotic influences, fragmentation can affect species dispersal and migration through its effects on forest connectivity. Landscape ecology conceptualizes connectivity as a gradient of critical thresholds, ranging from the large intact forest to the small unconnected forest patch. This article reports results from a multiple-scale analysis of forest fragmentation in Jamaica's Cockpit Country, an area of once contiguous forest now under threat from human encroachment. Spatial forest data derived from classification of ETM+ satellite imagery are used to measure fragmentation patterns representing various degrees of forest connectivity and density. The results suggest that, overall, 81% of the region is in forest. However, fragmentation patterns also suggest that this forest is riven with extensive perforations indicative of an early stage in the decline of contiguity. The results provided by the spatial fragmentation model are a first step in the design of effective conservation and rehabilitation plans for the area. The article concludes with a discussion of possible multiscale management options for the region.