Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A numerical investigation to the strategies of the localised heating for micro-part stamping

Peng, X. and Qin, Y. and Balendra, R. (2007) A numerical investigation to the strategies of the localised heating for micro-part stamping. International Journal of Mechanical Sciences, 49 (3). pp. 379-391. ISSN 0020-7403

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Local heating renders attractive characteristics for achieving high efficiency of metal forming. With reference to micro-part stamping, two localised-heating methods, electrical heating and laser-heating, are investigated with FE simulation. Results show that electrical heating would result in an advantageous distribution of the temperature in a steel work-material. A desired temperature distribution may also be achievable for a copper work-material, if a high-powered laser beam is used. Both electrical heating and laser-heating enable reduction of the stamping force and increase of the aspect ratio that is achievable by stamping. The simulation also demonstrates that both electrical heating and laser-heating are able to result in the desired temperature-distributions at sufficiently high heating-rates and that the methods are easy to be implemented. The comparison further shows that electrical heating is more favourable for engineering applications.