Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Improving the thermal stability of 1-3 piezoelectric composite transducers manufactured using thermally conductive polymeric fillers

Parr, A.C.S. and O'Leary, R.L. and Hayward, G. and Smillie, G. (2003) Improving the thermal stability of 1-3 piezoelectric composite transducers manufactured using thermally conductive polymeric fillers. In: 2003 IEEE Ultrasonics symposium proceedings. IEEE, New York, pp. 362-365.

[img]
Preview
PDF
IEEE_Symposium_2003_Parr.pdf
Final Published Version

Download (190kB) | Preview

Abstract

With a view to improving the thermal stability of ultrasonic transducers prepared using 1-3 piezoelectric composites, the use of front face layers manufactured from thermally insulating and partially thermally conductive polymeric materials has been investigated. Experimentally, heat dissipation was investigated, in air and in water, using different transducer configurations and the advantage of including a front face layer manufactured from thermally conductive polymeric material is demonstrated. The PZFlex finite element modelling package was utilised to assess the thermal diffusivity of each polymer in the different transducer configurations and was found to compare well with experiment.