Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Anisotropic optical response of elongated Pb islands in the infrared spectral region

McAlinden, Niall and Wang, Jing-Jing and McGilp, John (2012) Anisotropic optical response of elongated Pb islands in the infrared spectral region. Physica Status Solidi B. ISSN 0370-1972

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Lead forms elongated islands when grown on vicinal Si(111) surfaces. Polarized infrared transmittance studies have shown a strong anisotropic optical response associated with antenna-like plasmonic resonances, whose spectral position in the region of 0.25 eV is sensitive to the length of the islands. Reflection anisotropy spectroscopy (RAS) using a photoelastic modulator (PEM) should be more sensitive to such optical anisotropies, but becomes difficult below ∼0.5 eV for instrumental reasons. Measurements of the anisotropic response, in reflectance, of Pb islands grown on Si(557)-5 × 1–Au are extended down to ∼0.12 eV by combining sample rotation with tuneable femtosecond laser irradiation from a difference frequency generator. The extended RAS spectral range allows the full anisotropic nanoparticle plasmon-polarition optical response in the surface plane to be explored for this type of material system. Reasonable agreement with a simple nanoantenna model of the resonance maximum is obtained, but calculating the full line profile of the RAS response of supported nanoparticles remains challenging.