Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Modelling collective learning in design

Wu, Zhichao and Duffy, A.H.B. (2004) Modelling collective learning in design. AI EDAM - Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 18 (4). pp. 289-313. ISSN 0890-0604

[img]
Preview
PDF (Modelling collective learning in design)
Modelling_collective_learning_in_design.pdf
Final Published Version

Download (1MB)| Preview

    Abstract

    In this paper, a model of collective learning in design is developed in the context of team design. It explains that a team design activity uses input knowledge, environmental information, and design goals to produce output knowledge. A collective learning activity uses input knowledge from different agents and produces learned knowledge with the process of knowledge acquisition and transformation between different agents, which may be triggered by learning goals and rationale triggers. Different forms of collective learning were observed with respect to agent interactions, goal(s) of learning, and involvement of an agent. Three types of links between team design and collective learning were identified, namely teleological, rationale, and epistemic. Hypotheses of collective learning are made based upon existing theories and models in design and learning, which were tested using a protocol analysis approach. The model of collective learning in design is derived from the test results. The proposed model can be used as a basis to develop agent-based learning systems in design. In the future, collective learning between design teams, the links between collective learning and creativity, and computational support for collective learning can be investigated.