Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

The effect of processing on the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers

Chambers, R. and Daly, J.H. and Hayward, D. and Liggat, J.J. (2001) The effect of processing on the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Journal of Materials Science, 36 (15). pp. 3785-3792. ISSN 0022-2461

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Semi-crystalline poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers are biodegradable systems with potential as substrates for use in tissue regeneration. Previous studies have shown that severe embrittlement occurs on storage at room temperature restricting their application possibilities. Concepts such as secondary, advancing crystallisation causing changes in the amorphous/crystalline ratio have been mooted as the cause of the embrittlement. Using films prepared by extrusion and compression moulding procedures we have attempted to probe not only the pure amorphous and crystalline phases but also the interfacial region. Interpretation of dynamic mechanical and dielectric data highlights the changes in the nature of the interfacial region on processing. Moreover, the use of the Thermally Stimulated Discharge technique is a powerful probe for highlighting the morphological changes induced in multiphase systems by the processing step.