Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Optimal transmission scheme for the distributed antenna in CDMA systems

Tong, F. and Glover, I.A. and Pennock, S. and Shepherd, P. (2004) Optimal transmission scheme for the distributed antenna in CDMA systems. In: 5th IEE Internatinal Conference on 3G Mobile Communication Technologies, 2004-10-08 - 2004-10-20.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Distributed antenna diversity employs separately installed, but cooperating, antennas within a single base-station; it has been proved that the uplink capacity (per cell) in terms of maximum achievable SIR (signal-to-interference ratio) is linear with the number of deployed antenna units. While in the downlink, because of the multiple-to-one propagation topology, equal power (transmission power at each antenna) allocation (providing equal SIR) in the base-station results in fixed SIR at the mobile terminal, irrespective of the number of base-station antennas used. A transmission scheme, using optimal power allocation and SIR-balanced power control, is proposed to increase the SIR by exploiting multiple base-station antennas. The downlink diversity (called antenna-multipath diversity) transfers the antenna diversity to multipath diversity by utilizing the spread-spectrum signal property. If optimal, rather than equal, power allocation is employed with antenna-multipath diversity, the SDMA advantage can be exploited. The optimisation result shows that, for a particular user, transmitting a signal from one antenna, instead of all base-station antennas, gives better SIR performance. The SIR CDF has been examined by simulation to verify this scheme. Compared to sending from all antennas, the result shows, that for 8 users, this scheme yields improved SIR by 3 dB with 5 antennas. The SIR advantage increases with increasing numbers of antennas and decreases, however, with increasing numbers of users in the cell.