Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Effect of shading on amorphous silicon single and double junction photovoltaic modules

Johansson, A. and Infield, D.G. (2004) Effect of shading on amorphous silicon single and double junction photovoltaic modules. International Journal of Ambient Energy, 25 (2). pp. 65-72. ISSN 0143-0750

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

The effect of shading amorphous silicon photovoltaic mini-modules is investigated by means of measurements and simulation. Several devices are measured under varying degrees of shading and the reverse bias behaviour is investigated including the reverse breakdown voltage. A simulation using a modified single diode model for amorphous silicon is presented, in which the Bishop extension of the shunt resistance is used to simulate the behaviour of shaded devices. Agreement with measurements is discussed. The differences between the effect of shading on amorphous silicon and on crystalline silicon devices are investigated based on this model. It is shown that the thin film cells do not develop hot spots in the same manner as crystalline silicon devices, but always break down at the interconnection to the adjacent cell.