Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Nitinol for prosthetic and orthotic applications

Buis, Arjan and Henderson, Emma (2012) Nitinol for prosthetic and orthotic applications. Journal of Materials Engineering and Performance, 20 (4-5). pp. 663-665. ISSN 1059-9495

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

As global populations age, conditions such as stroke and diabetes require individuals to use rehabilitation technology for many years to come due to chronic musculoskeletal, sensory, and other physical impairments. One in four males currently aged 45 will experience a stroke within 40 years and will often require access to prolonged rehabilitation. In addition, worldwide, one individual loses a limb every 30 s due to the complications of diabetes. As a result, innovative ideas are required to devise more effective prosthetic and orthotic devices to enhance quality of life. While Nitinol has already found much favor within the biomedical industry, one area, which has not yet exploited its unique properties, is in the field of physical rehabilitation, ranging from prosthetic and orthotic devices to assistive technology such as wheelchairs. Improved intervention capabilities based on materials such as Nitinol have the potential to vastly improve patients quality of life and in the case of orthoses, may even reduce the severity of the condition over time. It is hoped that this study will spark discussion and interest for the materials community in a field which has yet to be fully exploited.