Picture of blood cells

Open Access research which pushes advances in bionanotechnology

Strathprints makes available scholarly Open Access content by researchers in the Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) , based within the Faculty of Science.

SIPBS is a major research centre in Scotland focusing on 'new medicines', 'better medicines' and 'better use of medicines'. This includes the exploration of nanoparticles and nanomedicines within the wider research agenda of bionanotechnology, in which the tools of nanotechnology are applied to solve biological problems. At SIPBS multidisciplinary approaches are also pursued to improve bioscience understanding of novel therapeutic targets with the aim of developing therapeutic interventions and the investigation, development and manufacture of drug substances and products.

Explore the Open Access research of SIPBS. Or explore all of Strathclyde's Open Access research...

Nitinol for prosthetic and orthotic applications

Buis, Arjan and Henderson, Emma (2012) Nitinol for prosthetic and orthotic applications. Journal of Materials Engineering and Performance, 20 (4-5). pp. 663-665. ISSN 1059-9495

Full text not available in this repository.Request a copy from the Strathclyde author

Abstract

As global populations age, conditions such as stroke and diabetes require individuals to use rehabilitation technology for many years to come due to chronic musculoskeletal, sensory, and other physical impairments. One in four males currently aged 45 will experience a stroke within 40 years and will often require access to prolonged rehabilitation. In addition, worldwide, one individual loses a limb every 30 s due to the complications of diabetes. As a result, innovative ideas are required to devise more effective prosthetic and orthotic devices to enhance quality of life. While Nitinol has already found much favor within the biomedical industry, one area, which has not yet exploited its unique properties, is in the field of physical rehabilitation, ranging from prosthetic and orthotic devices to assistive technology such as wheelchairs. Improved intervention capabilities based on materials such as Nitinol have the potential to vastly improve patients quality of life and in the case of orthoses, may even reduce the severity of the condition over time. It is hoped that this study will spark discussion and interest for the materials community in a field which has yet to be fully exploited.