Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Adaptive protection architecture for the smart grid

Abdulhadi, I. and Coffele, F. and Dysko, A. and Booth, C. and Burt, G. (2011) Adaptive protection architecture for the smart grid. In: 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe). IEEE, pp. 1-8.

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Unique and varied power system conditions are already being experienced as a result of the deployment of novel control strategies and new generation and distribution related technologies driven by the smart grid. A particular challenge is related to ensuring the correct and reliable operation of protection schemes. Implementing smarter protection in the form of adaptive setting selection is one way of tackling some of the protection performance issues. However, introducing such new approaches especially to safety critical systems such as protection carries an element of risk. Furthermore, integrating new secondary systems into the substation is a complex and costly procedure. To this end, this paper proposes an adaptive protection architecture that facilitates the integration of such schemes into modern digital substations which are a staple of smart grids. Functional features of the architecture also offer powerful means of de-risking schemes and flexible implementation through self-contained modules that are suitable for reuse. An example adaptive distance protection scheme is presented and tested to demonstrate how the architecture can be implemented and to highlight the architecture's novel features.