Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

The depletion attraction between pairs of colloid particles in polymer solution

Striolo, Alberto and Colina, Coray M. and Gubbins, Keith E. and Elvassore, Nicola and Lue, L. (2004) The depletion attraction between pairs of colloid particles in polymer solution. Molecular Simulation, 30 (7). pp. 437-449. ISSN 0892-7022

Full text not available in this repository. Request a copy from the Strathclyde author


NVT Monte Carlo simulations were used to assess the effective interaction between pairs of colloid particles dissolved in non-adsorbing polymer solutions. The polymers were represented as freely-jointed-hard-sphere chains composed of 10, 20, or 30 segments. The size of the interacting colloid particles was similar to or smaller than the radius of gyration of the polymers. Results show a short-range colloid-colloid depletion attraction. At low polymer concentration, this attraction slowly decays to zero at increasing separations. At higher polymer concentration, the depletion attraction is coupled to a mid-range repulsion, especially for solutions of short, stiff polymers. From the simulated forces, osmotic second virial coefficients were computed for colloids as a function of polymer concentration. The calculated osmotic second virial coefficients exhibit a non-monotonic dependence on polymer concentration, in qualitative agreement with experimental results. The simulated colloid-colloid potentials of mean force were used, within a perturbation theory, to calculate fluid-fluid and fluid-solid coexistence curves. The colloids are treated as a pseudo one-component system, and the polymers in solution are considered only through the effective pair potential between the dissolved colloids. When long flexible polymers are dissolved in solution, the phase diagram for small colloid particles shows a fluid-fluid coexistence curve at low colloid packing fraction, and a fluid-solid coexistence curve at higher packing fraction. As the size of the colloid particles increases, the molecular weight of the polymer decreases, or the polymer concentration in solution increases, the fluid-fluid coexistence curve becomes metastable with respect to the fluid-solid coexistence curve.