A photovoltaic-powered seawater reverse-osmosis system without batteries
Infield, D.G. (2004) A photovoltaic-powered seawater reverse-osmosis system without batteries. Solar Energy, 776. pp. 909-916. ISSN 0038-092X (https://doi.org/10.1016/S0011-9164(03)80004-8)
Full text not available in this repository.Request a copyAbstract
An efficient cost-effective batteryless photovoltaic-powered seawater reverse-osmosis desalination system is described. The system has a modest 2.4 kWp photovoltaic array and yet promises to deliver 3 m3/d throughout the year in an example location in Eritrea, operating from borehole seawater (at 40,000 ppm). Existing demonstrations of photovoltaic-powered desalination generally employ lead-acid batteries, which allow the equipment to operate at constant flow. In practice however, batteries are notoriously problematic, especially in hot climates. The system employed here operates at variable flow, enabling it to make efficient use of the naturally varying solar resource, without need of batteries. The system employs standard industrial inverters, motors and pumps, which offer excellent energy and cost efficiency. Maximum power point tracking (MPPT) for the photovoltaic array is provided by a novel and extremely simple control algorithm, developed by CREST. Performance and cost estimates from laboratory testing and extensive modelling are presented.
-
-
Item type: Article ID code: 38228 Dates: DateEvent2004PublishedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 06 Mar 2012 15:14 Last modified: 11 Nov 2024 09:03 URI: https://strathprints.strath.ac.uk/id/eprint/38228