Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

New alkali metal primary amide ladder structures derived from tBuNH(2): building cisoid and transoid ring conformations into ladder frameworks

Clegg, W and Henderson, K W and Horsburgh, L and Mackenzie, F M and Mulvey, Robert (1998) New alkali metal primary amide ladder structures derived from tBuNH(2): building cisoid and transoid ring conformations into ladder frameworks. Chemistry - A European Journal, 4 (1). pp. 53-56. ISSN 0947-6539

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Two novel alkali metal amide ladder complexes have been synthesised and crystallographically characterised. Derived from the same primary amine precursor (tBuNH(2)), they represent important additions to the series of ladder arrangements previously established within secondary amide chemistry. Thus the sodium amide.amine complex [{[tBuN(H)Na](3) . H(2)NtBu}(x)] forms an infinite wavelike ladder structure. Covering three nitrogen-sodium rungs, its curved sections display a cisoid conformation of amide substituents; but where these curved sections fuse, a transoid conformation is found. Every third sodium cation along the ladder framework is ligated by a tert-butylamine solvent molecule. In contrast, the heterobimetallic derivative, [{[tBuN(H)](2)LiNa . tmeda}(2)], adopts a finite oligomeric ladder structure limited to only four nitrogen-metal rungs in length. The central rungs contain lithium, while the outer rungs contain sodium. As in the all-sodium structure, the ladder is curved; there is a mixture of cisoid and transoid ring conformations within its framework. TMEDA solvent molecules complete the structure by chelating the sodium cations at the ladder ends.